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Introduction

We will learn in this first lesson how to use ABINIT, in order to get and analyze some physical
properties of a solid: the total energy, the lattice constant, the density of states, and the Kohn-Sham
bandstructure. The Kohn-Sham eigenvalues and eigenstates are actually the ingredients that the program
DP needs to calculate the optical spectra.

ABINIT is a pseudopotential plane wave package which computes the total energy, the charge den-
sity, and the electronic structure of periodic systems composed of electrons and nuclei. The program is
based on density functional theory (DFT) in the Kohn-Sham scheme. All information about the ABINIT
package can be found in the ABINIT’s Homepage (http://www.abinit.org). The fundamentals of DFT can
be found elsewhere (see DFT paper by UIf Von Barth). DFT reduces the initial interacting many-particle
problem to an exact non-interacting single-particle problem. The conceptual advantage is evident. Ap-
proximations occur later. Here we point out some approximations used while studying solids with DFT:

e The choice of the k-point mesh. An ideal crystal is invariant under translations by any of the
vectors defining the direct Bravais lattice. If periodic boundary conditions are applied to the unit
cell, remembering the Bloch’s theorem, the quantum numbers which label the eigenstates are the
wavevector k belonging to the first Brillouin zone (BZ) and the band index n. The bandstructure,
i.e. the dispersion of the energy levels in k-space, is usually depicted for different n’s along some
high symmetry k-lines in the BZ. The number of allowed k-points is equal to the number of cells
composing the crystal. In the limit of an infinite crystal, this gives a infinite set of points. Thus,
when dealing with sums over the k points — as in the calculation of a key-quantity like the charge
density n—the sum is turned into an integral over the BZ:
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where @,k (r) are the Kohn-Sham orbitals and Qg is the volume of the primitive cell. In practice,
to perform a numerical calculation, the integral must be discretized over a set of Ny weighted
k-points:
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where the (lattice dependent) weights w; and points Kk; are chosen to reproduce the integral as
accurately as possible, by using the smallest number of points. If the function to be integrated is
periodic and symmetric in the reciprocal coordinates, the so-called special points can be chosen
by exploiting the symmetry properties of the crystal. The introduction of the concept of special
points is due to Baldereschi in 1973. This idea was further elaborated by Chadi and Cohen and,
later, by Monkhorst and Pack. Their methods are now widely used. A Monkhorst-Pack (MP) set
consists in points equally spaced in the BZ, that are not related to each other by any symmetry
operation. In comparison with an arbitrary grid of points, which does not reflect the symmetries of



the BZ, the MP set reduces drastically the number of points necessary to attain a specific precision
in calculating integrals. We will see in the following examples that to solve the integrals occurring
in the calculations of optical properties, it is more convenient to use a shifted Monkhorst-Pack grid.
Convergence with respect to the k-point set must be checked carefully, both for the total energy
and for the optical spectra.

e The cutoff of the plane wave basis. When studying an infinite system composed of a repeated
periodic unit, the most natural choice for the expansion of the one-particle wavefunction @; = @
is a plane wave basis. In fact, with the help of the Bloch’s theorem we can write:
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where un, (r) has the same periodicity of the crystal lattice and G is a reciprocal lattice vector.
The choice of a plane wave basis presents some advantages:

It simplifies the evaluation of derivatives and integrals, making it easy to calculate the matrix
elements of the Hamiltonian.

Fast Fourier transforms (FFT) can be used to move rapidly from the direct to the reciprocal
space and vice-versa.

Plane waves form a complete and orthonormal set, independent of the atomic positions.

The truncation of the infinite basis set is given by a cutoff in energy:
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which is linked to the number of plane waves Npy in the basis by the relation
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Convergence of the total energy can be controlled without ambiguity by increasing the cutoff.
In applications to spectroscopy, the absolute convergence of the total energy is not very im-
portant, the most important quantities being instead energy differences. Energy differences
converge more rapidly than the energy itself, so it is possible to achieve convergence — in our
case to about a few meV — with a relatively low cutoff compared to total energy converged
calculations.

e The pseudopotential approximation. In the solids we are interested in, core electrons are rather
frozen in their atomic configuration, and do not take part in the chemical bond. The idea of the
pseudopotential method is to mimic the effect of core electrons on valence electrons by means
of an effective (pseudo) potential, which reproduces the same valence eigenvalues and scattering
properties of the real atom. The pseudopotential technique has the double advantage of decreasing
the cutoff energy (the pseudowavefunctions are much softer in the core region) and to include a
reduced number of electrons (only valence electrons). A plane wave basis set is then particularly
suitable to develop the soft pseudowavefunction. Concerning the theory of pseudopotentials, we
refer the reader to the rich literature on the subject. In the present tutorial calculations, we use
Hamann and Trouiller-Martins norm-conserving pseudopotentials, which were generated with the
thi98PP package.

To conclude, we remind another important approximation in ground state DFT calculations:



the choice of the exchange-correlation potential. In the following, we will use the local density
approximation (LDA), which consists in expressing the functional dependence of the exchange-
correlation energy on the density with a simple dependence on the local value of the density. It is
defined by:

EXPA N = [ n(r)exc(n(r)r. ©)
where &, is the exchange-correlation energy for a particle in an interacting homogeneous electron

gas, known with a very high precision from Monte Carlo simulations. LDA gives good results in
semiconductors.

For curiosity, the steadily growing importance of DFT is witnessed by an interesting paper appeared

recent
for all

ly in the e-Print archive cond-mat0407137. This paper presents a quantitative analysis of citations
publications in Physical Review journals from July 1893 to June 2003. The two most cited articles

are the Kohn & Sham (1st) and Hohenberg & Kohn (2nd) papers about DFT. Many other papers related

to our

previous discussion (pseudopotentials, k-points sets, LDA, ...) can be found in the top 100.

We are ready to start the practical class on the use of ABINIT to determine the bandstructure of
crystalline solids. As a first, simple, example we will work with bulk silicon.

Objectives

Tasks

1.

Prepare an input file for ABINIT, defining all the necessary parameters.

Study the convergence of the ground state energy with respect to the cutoff energy.
Determine the relaxed lattice constant.

Output and plot the bandstructure and the density of states (DOS).

Create the “x_KSS” file containing complete information on the Kohn-Sham bandstructure and
pseudopotentials used.

Convergence of the total energy with respect to the cutoff energy.

Move to the directory ~/solids/ground_state/. There you will find the file “gs.files”. The different
lines have the meaning:

the name of the main input file (silicon-gs.in),

the name of the main output file (silicon-gs.out),

the root names for the other input files (si_i),

for the other output files (si_0),
e and for the temporary files (si_t),
o the names of the pseudopotential files (si_h.cpi).
Edit the main input file “silicon-gs.in” and give a look at the input variables and their explanations.

Additional information on the input variables are available at
http://www.abinit.org/ABINIT/Infos_v4.1/keyhr.htm.



You are going to run a convergence study with respect to the planewave cutoff energy. In a real
calculation, we should also check the convergence with respect to the k-point grid. In this case, the
selected k-point grid assures an error on the total energy smaller than a few meV, that is sufficient
for our purposes. To start the run type:

>abinis < gs.files > gs.log

This run should last a few minutes.

Read thoroughly the output file “silicon-gs.out” to understand how the information is organized.
Then print the total energy as a function of the kinetic energy cutoff.

Can you answer the following questions?

Q1. What distinguishes the 10 datasets?

Q2. How many SCF cycles were needed to have the tolerance criterion (toldfe) satisfied?

Q3. How many Kk-points are used for the integration of the charge density over the Brillouin zone?
Q5. Which cutoff energy assures an error for the total energy smaller than 10 meV?

Q4. What can you say about the convergence of the eigenvalue differences at a given k-point?

For the calculation of optical spectra, the pseudopotential approximation gives an error of the
order of 0.1 eV (~ 0.004 Hartree). Therefore we estimate that a cutoff of 7.5 Hartree is enough as
it allows the energy differences to be converged better than this error.

. Determination of the relaxed lattice constant. The equilibrium structural parameters (i.e. the
Bravais lattice type and the lattice constants) can be determined ab initio, by inspecting the mini-
mum of the total energy. With ABINIT, we can run the automatic optimization of the cell volume.
The main input file is “silicon-relax.in”. The list of files is in “relax.files”.

What are the new variables with respect to the previous run? Check their use on the ABINIT web
page. To start the run type:

>abinis < relax.files > relax.log

This run should last a few minute.

Read the output file.

Q1. What are the residual stresses?
Q2. What is the theoretical lattice constant?

Q3. Which is the percentage error with respect to the experimental lattice constant (5.431 Angstrt')m
at 25 degrees Celsius)?

In the following steps we will use the theoretical lattice constant that we have just calculated.

. Calculation of the bandstructure and the density of states. We now run again a total energy
calculation at the theoretical lattice constant. The run associated to the first dataset produces two
additional output files, the file “’«_DEN” containing the electron density and the file “x_DOS”
containing the density of states. In the run associated to the second dataset, we build the KS
Hamiltonian using the charge density stored in the file “x_DEN” and we diagonalize it along some
high symmetry directions in the BZ.

The main input file is “silicon-bands.in” and the file names are in “bands.files”.

Q1. Which parameters are set in the input file to get the additional output files “x_DEN” and
KL*_DOS’1 ?



To start the run type:
>abinis < bands.files > bands.|og

Print the density of states. Extract the bandstructure from the file “silicon-bands.out” using the
script “abi-bands”. Plot the Kohn-Sham bandstructure. It is well known that the Kohn-Sham
eigenvalues are not quasiparticle energies. However, in the case of silicon, in spite of the strong
underestimation of the band gap (0.65 eV smaller than the quasi-particle gap), the band dispersion
and width are in agreement with quasiparticle GW calculations. Thus, quasiparticle bands can
be easily reproduced by applying a “scissor operator”, i.e. shifting the conduction bands rigidly
upwards.

4. Creation of the “x_KSS” file. Using the charge density calculated in the previous run (link the
“x_DEN?” file to an input file “si_i_DEN"), produce the “x_KSS” file, that contains information on
the pseudopotentials and the eigenstates at the k-points needed for the calculation of the spectra.
The input file is “silicon-kss256ks.in”. To start the run type:
>abinis < kss.files > kss.log
Analyze the output file and the file ”kss.log”:

Q1. What is exactly contained in the “x_KSS” file?

The KSS file will be our starting point for the calculation of spectra.

Comments
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Introduction

In lessons V, VI, and VII, we will use time-dependent density functional theory (TDDFT) to calcu-
late the absorption spectra of solids. Any property which depends only on the density, can be obtained
(in principle exactly) by the Kohn-Sham formalism. Here we are interested in excitation energies and po-
larizabilities within linear response (although TDDFT can, of course, also describe non-linear response),
which leads to some simplifications. In the following we remind the key concepts of the theory.

The starting point are the time-dependent Kohn-Sham equations:
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The solutions of Eq. (7) are the time dependent Kohn-Sham orbitals which yield the true charge density
n(r,t).

Linear response theory can be applied to study the effect of a small perturbation Ve (r,t) on the system.
In the linear approximation the induced charge density is related to the external potential

Ning (1, 1) = / Ardt'X (F, Pt —t')Veq(F',t) ®)
via the response function x(r,r’,t —t’), also called polarizability.

In the (TD)KS-scheme it is also possible to describe the response of the system (i.e. in terms of induced
charge density) to an effective total potential Viq, given by

\/tot(r7t) :V@(t(rat)+VH(r7t)+VXC(r7t)7 (9)
via

Ning(r,t) = /d3rdtx°(r,r’,t—t’)\/tot(r’,t’) (10)

where the independent-particle polarizability x© is the linear response of the fictitious Kohn-Sham system
(non-interacting one), and has the well known form
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directly translated in frequency domain. The damping factor n is also used for a Lorentzian broadening
of X°. Here f, and f. are Fermi occupation numbers, €. and €, are KS eigenvalues, and the sums run over
all KS orbitals (continuum states included). The two response functions x and x° are related by Eq. (9),
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or, more explicitly,
x(r,r',w) =xo(r,r, w)+
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The quantity
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has been introduced. It is called exchange correlation kernel and takes into account all dynamical ex-
change and correlation effects to linear order in the perturbing potential. The appeareance of the variation
of the Hartree and exchange-correlation potentials in the response function comes from the fact that the
total perturbation acting on the system is calculated self-consistently.

Of course, the exact time dependent exchange-correlation potential and kernel are unknown and
realistic calculations rely on some approximations. A widely used approximation is the adiabatic local
density approximation (TDLDA), in which fy is taken as the («>-independent, i.e. adiabatic) functional
derivative of the static LDA exchange-correlation potential
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The approximation chosen for the static potential V. determines the ground state, and hence x°. In
principle the exchange-correlation kernel should always be the functional derivative of the exchange-
correlation potential used to calculate the ground state, if one wants the sum rules to be fulfilled.

The TDLDA systematically fails in the description of absorption spectra of solids. The problem is the
incorrect asymptotic behavior of the adiabatic local density exchange-correlation potential, which decays
exponentially instead of having the correct 1/r tail. Several attempts have been proposed to overcome
these problems. Recently, Reining et al. [Phys. Rev. Lett. 88, 066404 (2002)] have shown that a static
long-range contribution (LRC) of the form

fx(9,G,G’,w) = —8c ¢'a/|q + G|? (14)

can simulate the strong continuum exciton effect in the absorption spectrum of bulk Si (q is a vector
in the first Brillouin zone (BZ), G and G’ are reciprocal lattice vectors, and o is a material dependent
parameter).

In Fourier space, the independent-particle polarizability (11) is written as
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where the one-particle states are Bloch wave functions, labeled by wave vector k and band index v(c).*
The sum over spins is responsible for the factor 2. The response function is normalized with the volume
Q of the system which reads Q = Qg - Nk, i.e. number of k-points times the volume of the unit cell.

1y (or ¢) stands for valence (or conduction) band index if the system is a semiconductor or an insulator.



The polarization matrices Py (0, G) = (v,k|e7'(@+C)T|c,k +-q) have also been introduced to simplify
the notation.

In order to connect the macroscopic (measurable) optical quantities and the microscopic electronic
structure, we need to define a dielectric function €. In the linear approximation, the effective potential
Vit IS related to the external potential Ve via

Via(r,9) = [ dre(r, Ve (1) (16)

where the inverse dielectric function £~ acts as a screening for the external potential. From the previous
equation and the Eqgs. (9) and (8) one can easily find the connection between the dielectric function and
the polarizability. However, the portion of screening that has to be included in €2, depends on the probe
(different probes will be “screened” by different parts of the response function). We have to read that in
two steps:

1 The external perturbation Ve produces an induced charge density in the system njng = X Vext With
X as response function. When Vg can be considered to be classical, X Ve depends only on the
nature of the system (in our case, a gas of interacting electrons, so X = (1 — X% — X% fxc) "2x9).

2 The induced charge creates a screening, described by €1 which depends on the nature of the
perturbation to be screened. If the probe is a test-particle, it has no exchange-correlations effects
with the responding electron gas. On the contrary an electron (test-electron) “feels” not only an
induced classical potential vning, but also an induced exchange-correlation potential Vye = fyching.
Therefore

grp = 1+VvYX (17)

g1t = L+ VX + fxcX (18)

for the test-particle and test-electron cases, respectively.

In this lesson, we deal with the test-particle dielectric matrix, hence in reciprocal space,

£c.0(0,0) = 8c e +Ve(d) Xe.c' (0, ). (19)

It is useful at this point to define the crystal local fields. A solid which possesses lattice-potential sym-
metry is non-homogeneous on the microscopic scale, even when it is characterized by a cubic symmetry
group which yields isotropic optical properties. When an external perturbing field of small wave vector q
and frequency w is applied to the system, the local field will in general contain “Bragg reflected” terms,
i.e. dependent on the wave vector g+ G, where G is a reciprocal lattice vector. These microscopically
varying terms fluctuate on the wavelength of the interatomic spacing. The frequency w is not affected,
as time is homogeneous. The difference between the local and the macroscopic field constitutes the
local-field corrections in the electromagnetic response.

Let us consider an electric field E incoming on a non-homogeneous medium. In the linear approxi-
mation polarization effects are described by the electric displacement vector D:

D(a+G,w) = mic(q+G,q+ G w)E(q+G',w). (20)
GI

We are interested in a relation which, in the limit of a negligible q, considers only macroscopic quantities:

DM (OO) = &M ((x))EM ((JO) . (21)



The macroscopic dielectric tensor can be related to the inverse of the microscopic dielectric matrix:
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The difference between a homogeneous and a non-homogeneous medium lies in the off-diagonal terms.
In direct space this means that the microscopic dielectric function €(r,r’) depends explicitly on the posi-

tions r and r’, and not simply on the distance |r —r’|.

If the medium were homogeneous, the macroscopic dielectric function would be
em = limeg_oc—o, (23)
a—0 ’

i.e. the spatial average of the microscopic dielectric function. In case of isotropic media, the direction in
which the limit of the small g vector has to be taken is insignificant.

Absorption and electron energy loss spectra (EELS) are related to the macroscopic dielectric function
through:
1
Abs = O{em} ; EELS:—D{—}.
Em
We can now summarize the steps leading to the determination of an optical spectrum when using
the DP code.

1) A ground state calculation is usually done in the DFT framework, where a reasonable exchange-
correlation potential V. has been chosen, e.g. the V.LPA. From this first step one obtains the ground
state electronic structure in terms of the (ground state) wavefunctions ¢; and eigenvalues &;.

Approximations involved: Vic[n](r) ~ V,-PA(n(r)) and pseudo-potentials. Moreover, the conver-
gence of the calculations with respect to the K-points and the dimension of the plane wave basis
must be assured.

2) The Independent-Particle polarizability x° can be built using wavefunctions and eigenvalues
obtained in the previous step, via Eq. 15.

Approximations involved: None, except the linear response framework.

3) The full polarizability x can then be obtained from x = (1 — X% — x%fx) 1x°.

Approximations involved: fyc. The simplest choice, namely the random phase approximation (RPA),
LDA
is to put the kernel to zero f™ = 0. The TDDLA fP-PA = §(r — r’)%{:grm is another possi-

bility. Here we will also see the application of the 0(/q2 kernel.
4) The dielectric function, calculated as €% = 1 + vy, permits one to obtain both absorption and
EELS via the macroscopic function ey = 1/gg;-

Approximations involved: None.

Before concluding this paragraph, two remarks are necessary.

1% observation: the crucial step of the previous summary is clearly the third one. In Eq. (12) two
terms have to be included. The first — and known — term is the Coulomb potential. The second term —
the unknown fyc — is the key of TDDFT, and its goal is to reproduce all the quasi-particle and excitonic
effects, which are not contained in the RPA (which is the starting point, since fR™ = 0).



2" observation: the TDDFT scheme we have used here, the most convenient to deal with solids, is
based on the linear response framework, it works in the Fourier space and in frequency domain. Another
difference with respect to real-space real-time TDDFT, where one lets the density n(r) evolve according
to Vet (r,t), maintaining the self-consistency between n(r) and Ve(r,t), is that here it is quite natural
to decouple the ground state calculation from that one of the response. Mathematically that means that
not necessarily fyc = ‘3(\3/;2 Here this constitutes an advantage because one can calculate the ground state
using a reasonable Vi, €.g. the LDA one.

Objectives

e Prepare an input file for DP, defining all the necessary parameters.
e Qutput and plot an absorption spectrum.

e Study the convergence of the spectrum with respect to the number of bands, the number of plane
waves in the wavefunctions, the dimension of the dielectric matrix, the set of k-points.

Tasks

e Calculation of a simple RPA spectrum. Move to the directory ~/solids/response/Si/. You will
find the file README. In this file you will find all the information you need to create an input file
and run the program. Now move in the subdirectory RPA and open the file “dp-start.in” and check
if you understand the meaning of all variables. Link the KSS file created by ABINIT to an input
file “si.kss”. Then run the program:
>dp -i dp-start.in -k si.kss > dp.out
In the file “dp.out” you can find a summary of the information contained in the “dp.in” and “si.kss”
files, and you can check if the different steps of the calculation have been completed correctly. The
results are in the files “outx.eps”. Can you answer the following questions?

Q1. What is the dimension of the dielectric matrix? What happens if you run again the program
after setting the dimension of the dielectric matrix in the input file to 1?

Q2. Is ascissor operator used?
Q3. Which xc kernel is used?

Q4. How many k-points are used?
Consider the two files “outlf.eps” and “outnlf.eps”.

Q5. Can you understand by reading the legend included at the beginning of the file what they
contain?

Plot the imaginary part and the real part of the dielectric function of silicon and compare with
the experimental spectrum (you find the curves in the xmgrace files). Try to change the artificial
broadening of the spectrum using the utility “broad”:

>broad outlf.eps

A reasonable broadening is usually about 0.1-0.2 eV.

e Convergence of a simple RPA spectrum. The set of shifted k-points that we are using have
already been tested to assure the convergence of the spectra. Check the convergence with the
number of bands and the number of planewaves in the wavefunction starting from the absorption



spectrum without local fields, in the energy range up to 6 eV. Once you have found the converged
values for nbands and npwwfn, then check the convergence of the local fields, by changing the
dimension of the dielectric matrix npwmat.

Q6. Were the variables in “dp-start.in” large enough to obtain a converged absorption spectrum?

In the directories ~/solids/response/*“other material” input and KSS files for other simple semicon-
ductors are available. Choose another material and calculate its RPA optical spectra.

Comments



Practical session XI
DP I
LECTURERS: SILVANA BOTTI, VALERIO OLEVANO
September 3, 2004 B 14h30m-16h00m

Objectives

Tasks

Compare the spectra obtained within RPA or with a TDLDA xc kernel.

Understand the origin of the peaks through the comparison with the bandstructure and density of
state plots.

Calculate an EELS spectrum.

Calculation of a simple TDLDA spectrum. Move to the directory ~/solids/response/Si/TDLDA/.
Create an input file to run the TDLDA calculation of the optical response. You can use as an
example the input file for the RPA calculation. Note that the number of bands and plane waves
which give a converged RPA spectrum should also give a converged TDLDA spectrum. Only the
convergence with the dimension of the dielectric matrix must be checked.

— Q1. Is it necessary to take a larger dielectric matrix?
Compare the TDLDA absorption spectrum with the RPA one.

— Q2. What can you conclude about the effect of the xc kernel for the spectrum of silicon
within TDLDA?

— Q3. Can you understand which transitions contribute to the peaks, by inspecting the plots of
the bandstructure and the density of states?

Calculation of a simple EELS spectrum. EELS and absorption are closely related spectra, both
carrying information about the electronic response of the system. EELS is traditionally interpreted
as being dominated by collective plasmon excitations, whereas single particle-hole excitations
(essentially joint density-of-states) control the absorption spectra. This can be understood easily
in the independent particle picture, since the imaginary part of the Fourier transform of Eq. (23) is
proportional to 1/6? 3¢ [(Wy|V|We) [28(ec — &y — ), where v is the velocity operator, and the sum
runs over occupied (valence) and unoccupied (conduction) states gy, Yc with energy €, and &,
respectively. Instead, since —Im{1/em} = Im{ey}/(Re{em}%+ Im{em }?), the structure in EELS
is mainly given by regions where both the real and the imaginary part of €y are close to zero, that
is the classical condition for a collective (plasmon) mode.

Move to the directory ~/solids/response/SI/EELS/. The input file “dp-eels.in” is already there.
The convergence parameter have been increased with respect to the absorption spectrum calcula-
tion. In particular, the number of bands is increased, as the plasmon peak appears at about 17 eV.
Run DP as usual. All the information necessary to calculate the EELS is inside the macroscopic
dielectric function. To transform the dielectric function in “outlf.eps” in the EELS function, the
utility “eps2eels” can be used as follows:



>eps2eel outlf.eps
The new file “outlf.eel” contains the EELS. You can broaden the curve with the utility “broad” as
usual.

— Q1. How do the RPA and TDLDA EELS spectra compare to the experiment?

Comments
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Objectives

e Calculate spectra with the a/g? xc-kernel.

e Observe the effects on the spectra due to variations of a.

Tasks

e Calculation of a simple spectrum with the o /g? xc-kernel. Move to the directory ~/solids/response/Si/ALPHAV.
Create an input file to run the calculation of the optical response using the o /g2 xc-kernel. You can
use as an example the input file for the RPA calculation. Remind that the quasiparticle eigenener-
gies are needed. For these simple semiconductor materials the application of a scissor operator is
usually sufficient 2. The parameters which give a converged RPA spectrum are good also for this
calculation. Calculate spectra for different negative values of a and compare the imaginary part of
ew to the experimental absorption spectrum.

— Q1. What can you observe when the absolute value of a increases from 0 to 2?
— Q2. What is the value which gives the best agreement with experiment?
— Q3. How does the real part of the dielectric function compare to the experiment for this

optimal value of a?

e Scaling of a with respect to the dielectric constant. Do not forget that in the directory ~/solids/response/other _materiz
input files for other simple semiconductors are available. You can play with other materials by
calculating the value of a which gives the best agreement with experiment. Using the table of
dielectric constants below, it is possible to establish the dependence of a on the dielectric constant.

Tabela 1: Dielectric constant of some semiconductors.

Si  GaAs AlAs Diamond SiC
11.4 106 8.2 5.65 6.5

Comments

I want to thank Francesco Sottile for parts of the introduction to lesson V taken from his Ph. D.
thesis. For more information, the pdf file of the thesis can be found at
http://theory.polytechnique.fr/people/sottile/sottile.html.

2For Silicon soenergy must be set to 0.6 eV, for GaAs 0.8 eV, for AIAs 0.9 eV, for SiC the fi le “SiC.gw” containing GW
correctionsis given.



