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Why and Where
the Frequency-Reciprocal space

could be convenient

• Reciprocal Space⇒ Infinite Periodic Systems (Bulk, but also Surfaces,

Wires, Tubes with the use of Supercells)

• Frequency Space ⇒ Spectra



Outlook

• Motivation

• TDDFT

• Linear Response TDDFT

• Frequency-Reciprocal space TDDFT
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Optical Absorption
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Energy-Loss (EELS)
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Inelastic X-ray Scattering Spectroscopy (IXXS)
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Coherent Inelastic Scattering Spectroscopy (CIXS)
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Problems for the Theory

• Reproduce Experimental Spectra

• Offer Reference Spectra to the Experiment

• Predict Optical and Dielectric Properties ⇒ Theoretical Spectroscopy

Facility



Accessed Observable:
the Macroscopic Dielectric Function εM(q, ω)

ε∞ = εM(q = 0, ω = 0) dielectric constant

ABS = Im εM(q = 0, ω) optical absorption

EEL = −Im
1

εM(q, ω)
energy loss



What is the TDDFT?

• TDDFT is an extension of DFT; it is a DFT with time-dependent

external potential:

v(r) → v(r, t)

• Milestones of TDDFT:

– Runge, Gross (1984): rigorous basis of TDDFT.

– Gross, Kohn (1985): TDDFT in Linear Response.



DFT vs TDDFT

Hohenberg-Kohn:

v(r) ⇔ ρ(r)
Runge-Gross:

v(r, t) ⇔ ρ(r, t)

The Total Energy:

〈Φ|Ĥ|Φ〉 = E[ρ]
The Action:∫ t1

t0
dt 〈Φ(t)|i ∂

∂t − Ĥ(t)|Φ(t)〉 = A[ρ]

are unique functionals of the density.

The stationary points of:

the Total Energy
δE[ρ]
δρ(r) = 0

the Action:
δA[ρ]
δρ(r,t) = 0

give the exact density of the system:

ρ(r) ρ(r, t)



DFT vs TDDFT

Kohn-Sham:
ρ(r)=

PN
i=1|φKS

i (r)|2

vKS(r)=v(r)+
R

dr′ ρ(r′)
|r−r′|+

δExc[ρ]
δρ(r)

HKS(r)φ
KS
i (r)=εKS

i φKS
i (r)

Runge-Gross:
ρ(r,t)=

PN
i=1|φKS

i (r,t)|2

vKS(r,t)=v(r,t)+
R

dr′ ρ(r′,t)
|r−r′|+

δAxc[ρ]
δρ(r,t)

i ∂
∂tφ

KS
i (r,t)=HKS(r,t)φKS

i (r,t)



TDDFT in Linear Response
Gross and Kohn (1985)

If:

vext(r, t) = vext(r) + δvext(r, t)

with:

δvext(r, t) � vext(r)

then:

TDDFT = DFT + Linear Response
(to the time-dependent perturbation δvext)



Hohenberg-Kohn Theorem
for Linear Response TDDFT

DFT: vext(r) ⇔ ρ(r)

TDDFT: vext(r, t) ⇔ ρ(r, t) Runge-Gross theorem

LR-TDDFT: vext(r) + δvext(r, t) ⇔ ρ(r) + δρ(r, t)
⇓

δvext(r, t) ⇔ δρ(r, t)



Linear Response TDDFT
calculation scheme

1. Ordinary DFT calculation:

vext(r) ⇒ ρ(r), εKS, φKS(r)

2. Linear Response calculation:

δvext(r, t) ⇒ δρ(r, t)



Polarizability χ

δvext external perturbation

δρ induced density

Definition of the polarizability χ:

δρ = χδvext



Variation in the Total Potential

The variation in the density induces a variation in the Hartree and in the exchange-

correlation potentials which screen the external perturbation:

δvH =
δvH

δρ
δρ = vcδρ

δvxc =
δvxc

δρ
δρ = fxcδρ

so that the variation in the total potential (external + screening) is

δvtot = δvext + δvH + δvxc



Exchange-Correlation Kernel fxc

The exchange-correlation kernel is defined:

fxc
def=

δvxc

δρ



LR-TDDFT Kohn-Sham scheme:
the Independent Particle Polarizability χ(0)

Let’s introduce a ficticious s, Kohn-Sham non-interacting system such that:

δρs = δρ

Then, instead of calculating χ, we can more easily calculate the polarizability χ(0) (also

χs or χKS) of this non-interacting system, called independent particle polarizability

and defined:

δρ = χ(0)δvtot



Independent Particle Polarizability χ(0)

By variation δvtot (= δvs = δvKS) of the Kohn-Sham equations, one obtains the
Linear Response variation of the density δρ and then an expression for χ(0) in terms
of the Kohn-Sham energies and wavefunctions:

χ(0)(r, r′, ω) = 2
∑
i 6=j

(fi − fj)
φi(r)φ∗j(r)φ

∗
i (r

′)φj(r′)
εi − εj − ω − iη

(Adler and Wiser)

In Frequency Reciprocal space:

χ
(0)
GG′(q, ω) = 2

∑
i 6=j

(fi − fj)
〈φj|e−i(q+G)r|φi〉〈φi|ei(q+G′)r|φj〉

εi − εj − ω − iη



χ as a function of χ(0)

From:{
δρ = χδvext

δρ = χ(0)δvtot

the polarizability in term of the independent particle polarizability is:

χ = (1− χ(0)vc − χ(0)fxc)−1χ(0)



Dielectric Function ε

Definition of the dielectric function:

δvtot = ε−1δvext

ε−1 = 1 + vcχ

In a periodic system it has this form:

εGG′(q, ω)



Macroscopic Dielectric Function

Definition:

εM(q, ω) def=
1

ε−1
00 (q, ω)

Approximation: Neglecting Local Fields:

εNLF
M (q, ω) = ε00(q, ω)

Macroscopic dielectric constant:

ε∞ = lim
q→0

εM(q, ω = 0)



Local Fields

Effect of non-diagonal elements (inhomogeneities):

δvtot
G =

∑
G′

ε−1
GG′ δv

ext
G′



LR-TDDFT Calculation Scheme
Résumé
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the code

• Definition: Linear-Response TDDFT code in Frequency-Reciprocal space on a PW basis

• Purposes: DP calculates Dielectric and Optical Properties (Absorption, Reflectivity, Refraction

indices, EELS, IXSS, CIXS, etc.) for Bulk systems, Surfaces, Cluster, Moleculs, Atoms (through

Supercells) made of Insulator, Semiconductor and Metallic elements.

• Approximations: RPA, ALDA, GW-RPA, LRC, non-local kernels, Mapping Theory, etc., with

and without Local Fields (LF)

• Languages: Fortran90 with C insertions (shell, parser, some libraries); Vectorialized and Partially

Parallelized (MPI)

• Machines: PC-Linux IFC, Compaq/HP True64, IBM AIX, SG IRIX, NEC SX5, Fujitsu

• Libraries: BLAS, Lapack, FFTW, CXML, ESSL, ASL, Nag, Goedecker, MFFT

• Interfaces: LSI-CP, ABINIT, PWSCF, FHIMD

DP package, Copyright 1998-2004 Valerio Olevano, Lucia Reining, Francesco Sottile, CNRS.



DP Flow Diagram
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DP Tricks

If we only need ε−1
00 = 1− v0χ00, that is only χ00

then, instead of solving (inverting a full matrix):

χGG′ =
(
1− χ(0)vc − χ(0)fxc

)−1

GG′′
χ

(0)
G′′G′

we solve the linear system for only the first column of χG′0:(
1− χ(0)vc − χ(0)fxc

)
GG′

χG′0 = χ
(0)
G0



DP Performances:
CPU scaling and Memory usage

• CPU scaling for χ(0): N2
G ·Nk ·Nb ·Nr log Nr

• CPU scaling for ε−1: N2
G ·Nω

• Memory occupation: N2
G ·Nω + Nr ·Nk ·Nb [sizeofcomplex]



Exchange-Correlation Kernel fxc

and its Approximations

Definition of the exchange-correlation kernel:

fxc
def=

δvxc

δρ



RPA Approximation

Random Phase Approximation (RPA) = Neglect of the exchange-correlation

effects:

RPA: fxc = 0

εRPA = 1− vcχ
(0)



ALDA Approximation (TDLDA)

Adiabatic Local Density Approximation:

ALDA: fALDA
xc =

δvLDA
xc

δρ

∣∣∣∣
ω=0

fALDA
xc (r, r′) = A(r)δ(r, r′) local in r-space

fALDA
xc GG′(q) = B(G−G′)



Results on EELS
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Results on IXSS and CIXS
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Conclusions on EELS

• RPA is good but with LF (Local Fields)

• ALDA does not improve unambigously



Results on ABS

3 4 5 6

ω [eV]

0

10

20

30

40

50

60

ε 2(ω
)

EXP
RPA
TDLDA
RPA NLF

Silicon
Optical Absorption



LRC Approximation

Long-Range Contribution only:

fLRC
xc = − α

(q + G)2

α = 4.6ε−1
∞ − 0.2



Results on ABS
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Mapping Theory (MT)

Mapping BSE on TDDFT:

fMP
xc [{φi}, {εi}]

χ = χ(0)
(
χ(0) − χ(0)vcχ

(0) − T [{φi}, {εi}]
)−1

χ(0)

T = χ(0)fxcχ
(0)



Results on Solid Argon ABS
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Conclusions on Optical Properties

• RPA and ALDA fail

• LRC already reproduces small Excitonic Effects

• Mapping Theory should be used for Strong Excitons



DP licence

• DP costed 7 years human full-time to the authors: is GNU/GPL going to reduce
the charge on the central?

• developping software is a job in itself!

• who is going to pay for this? are private companies interested in this software? not
yet!

• if the scientific community is interested and recognize the importance, then it must
hire people to develop these codes!

• International, European or even National institutions must be setup to manage
scientific codes interesting for the whole international scientific community.



DP licence and ETSF

IF ( )

THEN

= OpenSource GNU/GPL


